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Abstract

Innate behavioral biases and preferences can vary significantly among individuals of the same
genotype. Though individuality is a fundamental property of behavior, it is not currently understood how
individual differences in brain structure and physiology give rise to idiosyncratic behaviors. Here we
present evidence for idiosyncrasy in olfactory behavior and neural responses in Drosophila. We show
that individual female Drosophila from a highly inbred lab strain exhibit idiosyncratic odor preferences
that persist for days. We used in vivo calcium imaging of neural responses to directly compare
projection neuron (second-order neurons that convey odor information from the sensory periphery to
the central brain) responses to the same odors across animals. We found that, while odor responses

appear grossly stereotyped, upon closer inspection, many individual differences are apparent across
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antennal lobe (AL) glomeruli (compact microcircuits corresponding to different odor channels).
Moreover, we show that neuromodulation, environmental stress in the form of altered nutrition, and the
activity of certain AL local interneurons affect the magnitude of inter-fly behavioral variability. Taken
together, this work demonstrates that individual Drosophila exhibit idiosyncratic olfactory preferences
and idiosyncratic neural responses to odors, and that behavioral idiosyncrasies are subject to

neuromodulation and regulation by neurons in the antennal lobe.

Introduction

Olfaction is a deeply personal sense. We know from common experience that smells elicit strong
reactions linked to both past experiences and the perceptual qualities of the odors themselves.
Behavioral reactions to an odor (e.g., durian or gasoline) can vary greatly from individual to individual,
in some cases evoking responses that range from attraction to utter aversion, but the mechanisms by
which volatile molecules are mapped into perceptual space [1-3] and drive behavior are currently not
well understood. In humans, both socio-cultural experience [4-6] and genetic polymorphisms in odorant
receptors [7,8] have been shown to explain some of the individual variation in odor perception. In a
particularly clear example, people with hypomorphic receptor mutations experience specific anosmias
for cognate odors [9]. Presumably, such alterations in sensory detection affect downstream neural
responses, and thus odor perception, but currently relatively little is actually known about how this

idiosyncrasy manifests in the activity of deeper neural circuits.

A major obstacle to studying idiosyncrasy in neural circuit responses to stimuli has been the need to
identify corresponding circuit elements across individuals. This is difficult to do in large organisms with
complex, redundant neural circuits, where individual neurons are not identifiable (i.e., directly
comparable) across individuals. Moreover, testing hypotheses about the involvement of specific circuit
components in shaping the distribution of behavioral responses across individuals requires large
sample sizes (often hundreds of individuals, because precisely measuring a distribution requires
measuring rare individuals in its tails). This requirement alone largely precludes the use of mammals, or

other large vertebrates, to study these effects.

We addressed these challenges by leveraging the identifiable and grossly stereotyped neuroanatomy of
the antennal lobe (AL) of the fruit fly, Drosophila melanogaster. The Drosophila AL has around 50

identifiable odor-coding channels, which are conveniently arranged into spatially discrete glomeruli
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[10-12]. The glomeruli display remarkable stereotypy in their source of sensory neuron inputs,
anatomical position, relative sizes, and efferent innervation by extrinsic projection neurons (PNs) that
convey odor information to deeper areas of the brain [13-15]. Overlaid on this coarse stereotypy,
however, is a complex network of dense inter-glomerular connections provided by a population of
physiologically diverse AL local neurons (LNs) [16,17]. The roles played by these LNs in shaping and
modulating AL odor responses are diverse [16-19] and may offer several mechanisms for diversifying
odor responses in the AL. In one study of the morphology of single LNs, there were far more
anatomical classes of LNs across individuals than there are LNs per hemisphere in an individual fly
[16]. So it must be the case that the complement of LN wiring configurations in each fly is unique to that

individual.

Individuality in Drosophila behavior has been observed in phototaxis [20], spontaneous locomotor
biases [21], thermal preference [22], spontaneous microbehaviors [23,24], and object-fixated
locomotion [25]. These differences are persistent over days and represent something like fly
personality. Individual behavioral outcomes likely have a partial origin in stochastic events during
development [26], and genetic factors determine the magnitude of behavioral variability in isogenic
populations [27]. At the same time, the acute, post-developmental activity of specific neural circuits also
tunes individuality, meaning it is potentially under the real-time control of the nervous system [20,21]. It
is likely that these factors are at work in regulating individual odor preferences, but the extent of
individuality of odor coding — whether individual nervous systems represent the same stimulus in the
same way — has not been examined in this context. Using an automated odor-preference assay, we
measured significant individuality in odor preference that was stable across days. Using volumetric
two-photon microscopy, we observed individuality in the representation of odors in the antennal lobe.
Pharmacological and thermogenetic experiments established that multiple neuronal subtypes in the
antenna lobe and neuromodulatory axes affect odor preference individuality, forming a circuit with the

potential to dynamically tune odor preference variability in response to environmental cues.

Results

To determine whether individual flies exhibit idiosyncratic odor behaviors, we built an instrument to
measure the odor preference of 15 individual flies simultaneously (Figure 1A). In this rig, each fly
moves freely through a linear corridor in which two odor stimuli are pumped [28]. The airflow bearing

these odor cues is laminar, forming a sharp boundary between the two odor compartments at the
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middle of the corridor (Figure 1B and S1A). The position and orientation of each animal was tracked
automatically with machine vision. Each experiment consisted of a three minute “pre-odor period” in
which clean air was pumped into both compartments followed by a three minute “odor-choice period”
when alternative odor stimuli filled each half of each arena, lastly followed by a 30 second “post-odor

period” of clean air (Figure 1C).

In this setup, flies expressed olfactory preference by walking into, and staying in their preferred odor
compartment (Figure 1C). Preference was quantified as the fraction of time each fly spent in a
compartment. For example, in experiments where flies chose between odorants 3-octanol (OCT) and
4-methylcyclohexanol (MCH), preference was quantified as the proportion of time in OCT (with 0/1
indicating a complete preference for MCH/OCT respectively). In a clear sign that flies express odor
preference in this assay, we observed that they frequently turned around at the compartment boundary
(Figure S1B) when odors were present, while far fewer reversals occurred in the absence of odor
(Figure 1C). The frequency of these reversals decreased over the course of the three minute
odor-choice period, presumably as flies adapt/habituate to the stimuli. Thus, the odor-choice period and

our quantification of preference were limited to three minutes.

We observed a broad distribution of odor preference scores in OCT-MCH choice experiments among
highly inbred wild type (iso"""" strain; see Methods) females, reared in the same environment. Indeed,
the observed distribution was broader than we would expect to observe under a null model in which all
animals sample their odor-choice behavior from the same distribution (Figure 1D; p < 0.001). Even in
such “all flies are identical” scenarios, one would still observe apparent variation in the measured
preference scores because we are only able to assess odor choices over a three minute window. That
the observed distribution is broader than this null distribution (dashed lines in Figure 1D, F) indicates
that flies are behaving idiosyncratically. Additionally, the observed distribution of preference scores was
broader than the distribution of “sham” scores calculated from the pre-odor period (i.e., arbitrarily
assigning one half of the un-odorized arena to be OCT for purposes of calculating a preference index;
gray lines in Figure 1D), whose dispersion reflects individual variability in locomotion and sampling error
(Figure S1C, D) but not responses to odors. We quantified this difference in variance between the
observed and null behavioral distributions as an “Individuality score,” which, at 0.0174 for the
OCT-MCH choice, was significantly greater than 0 (p < 0.001; See Methods). Beyond the pair of
aversive odorants OCT and MCH, we also observed idiosyncratic odor preferences in experiments in
which flies chose between clean air and odorants 3-octanol (Figure 1F, left; Individuality score = 0.0047,
p < 0.001), 1-butanol (Figure 1F, middle; Individuality score = 0.012, p < 0.001), and 2-heptanone
(Figure 1F, right; Individuality score = 0.015, p < 0.001). Importantly, we also confirmed that
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idiosyncratic preferences persist across days (Figure 1G), as observed for other idiosyncratic fly
behaviors [20-22,27].

Idiosyncratic behavior presumably has a basis in idiosyncratic patterns of odor-induced neural activity.
We hypothesized that such response idiosyncrasies might be observable in the sensory periphery of
the olfactory circuit, specifically in the glomeruli of the antennal lobe. To test this hypothesis, we built a
stage for delivering the same odorant stimuli from our behavioral instrument to flies being imaged for
Ca™ activity with a 2-photon microscope (Figure 2A). As with the behavioral instrument, odor stimuli in
the imaging rig were computer-controllable and for each experiment we stimulated flies with three
panels of odorant cues (Figure 2B). In the first two panels, 12 different monomolecular or purified
extract odorants were delivered for 4 seconds each, with a ~80s pause between odors, in a random
order. In the third panel, OCT and MCH were delivered in alternation up to 5x times each, with the
same timing, and starting randomly with either OCT or MCH. For 24 seconds, starting 6 seconds prior
to odor onset, we recorded fluorescence in the dendritic compartment of Projection Neurons (PNs;
Figure 2C) using the transgenic line GH146 to drive expression of GCaMP6m in roughly two-thirds of
all glomeruli. These recordings were volumetric, and scan volumes (85um x 70um x 12 z-planes

spaced ~6.5 ym apart), covering all GH146-positive glomeruli, were acquired at ~0.8Hz.

As expected, we observed a variety of Ca++ responses in PN dendrites (Figure 2D, E and S2),
including excitatory and inhibitory responses to both odor onset and odor offset. As expected, the exact
responses depended on the glomerulus (Figure 2D) and the odor (Figure 2E). To characterize the
population responses in PNs to each odor, we sought to systematically compare odor responses across
many glomeruli. We developed a semi-automated pipeline for assigning glomerular labels to recording
voxels. This pipeline used k-means clustering to identify sets of voxels with similar response dynamics,
and priors about glomerular size and geometric configuration to provide a list of potential glomeruli,
which was finally labeled with glomerular identities (Figure 2F-G) and pruned of any non-glomerular
clusters manually. Given variation in transgenic expression, imaging preparation and mounting
geometry, we were not able to identify every glomerulus in every animal. But, we were able to efficiently
characterize the odor responses of dozens of animals, to a dozen odors, in 3 to 15 glomeruli, with a

mean of 10 (Figure S2).

Immediately, we noticed that the responses of some glomeruli were very different across individuals,
while appearing consistent across multiple presentations of the odorant within an individual (Figure
2F2-G2). To assess this systematically, we projected the multidimensional glomerulus-odor responses

onto their first two principal components (Figure 2I; See S3 for eigenvalues and odor response
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covariance), where we observed that within-fly responses (i.e., across presentations) were, on average,
closer than between-fly responses (p < 0.001 by bootstrap resampling). This was also true when we
examined the responses of OCT and MCH specifically in the space of responses to the OCT/MCH
stimulus panel (Figure 2J,K; p < 0.001 and p < 0.01, respectively). Separately, we confirmed that this
pattern was not an artifact of in-filling missing data for the PCA, as it was also observed in smaller data
sets with no missing data (Figure S4). Thus, neural responses to odors appear to differ significantly

across individuals, often qualitatively.

It has been previously shown that neuromodulators, specifically serotonin, affect the degree of
idiosyncrasy in another stimulus-response behavior, phototaxis [20]. We tested whether
neuromodulatory pathways also had an effect on individual odor preferences. We first examined the
role of serotonin by feeding flies increasing doses of the serotonin synthesis inhibitor
alpha-methyltryptophan (a-MW; 20 or 40mM; [29]). Flies fed ao-MW appeared to show a
dose-dependent reduction in variability compared to control flies. By contrast, feeding with the serotonin
precursor 5-hydroxytryptophan (5-HTP; [29]) had little effect (Figure 3A). While dopamine
pharmacological experiments had no effect on phototactic idiosyncrasy [14], the key role of dopamine in
olfactory associative conditioning in the mushroom bodies [30,31], led us to hypothesize that dopamine
could be essential to tuning individual odor preferences in an experience-dependent fashion (even in
the absence of structured associative training). Flies bearing a mutant allele of the Dop71R1 dopamine
receptor gene (Dop1R1™%7¢ hereafter referred to as Dop1R1 flies [31,32]), also exhibited lower
idiosyncrasy (narrower behavioral distributions) than control flies (Figure 3B). Conversely, flies fed the
dopamine precursor L-DOPA [30,31] exhibited higher idiosyncrasy. The lower idiosyncrasy of Dop1R1
could likely not be explained by anosmia, as these flies exhibited reversal behaviors at the odor
boundary during the odor-choice period, though they may have habituated to odors faster than wild

type flies (Figure S5).

In conducting these experiments, we realized that our experimental manipulations changed not only the
apparent variability of behavior, but also its mean, and for our choice of odor preference metric, the
mean and variance are coupled. We also suspected that seasonal effects, such as those that affect
insect olfactory conditioning [33] might also affect our measured preferences and variabilities. Indeed,
variability was higher in the winter — an effect that could be modeled as a linear function of Boston
outdoor air temperatures (despite experimental flies being grown in temperature- and
humidity-controlled incubators and tested in environmentally-controlled rooms; Figure S6B-E).
Moreover, we had more confidence in our measure of some individuals’ preferences than others — it is

hard to characterize the preference of flies that don’t walk much in the arenas.



179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209

We implemented a Bayesian linear modeling framework (Figure 3C) to estimate and control for each of
these effects, disentangle the coupling of mean and variance, and assign more weight to inferences
based on flies that were active and expressed preference more clearly. See Methods for details. The
output of this analysis was posterior distributions for each parameter of the model (Figure S6), and we
were particularly interested in the posterior distributions on the variance effects of genotype,
experimental condition, and genotype-by-experimental condition parameters corresponding to our
neuromodulatory manipulations (Figure 3D). Consistent with our observations of single experiments,
we found that 5-HTP has no strong effect on variability, while a-MW had a substantial negative,
dose-dependent effect (i.e., 0 was above the 95% credible interval for the a-MW effect parameters).

Additionally, Dop71R1 mutation reduced variability substantially, while L-DOPA increased it.

Serotonin neuromodulation appears to regulate behavioral idiosyncrasy, but does it also regulate
idiosyncrasy in the neural responses to odors? We imaged PN dendrite (GH146>GCaMP6m)
responses in flies that had been fed 40mM a-MW for three days and matched controls (raw data in
Figure S7). We again observed that the distance between odor presentations in response space was
less within a fly than between flies (Figure 3E-G). This was true in both control flies (0.001 < p < 0.01)
and a-MW-treated flies (0.01 < p < 0.05). The distance between a-MW-treated and control odor
responses both within and between flies was higher in a-MW-treated flies. These differences were not
statistically significant (p > 0.05), though they were seen for all projections onto the first n principle
components, as well as the first 4 PCs separately (Figure S4C,D). The inter-fly distances of
a-MW-treated responses did appear to be significantly greater than control responses on PC4 (p =
0.028) as did the intra-fly distances (p = 0.026), though these analyses would not survive a test for

multiple comparisons.

Next, we sought to examine the neural circuit basis of the modulatory effects on behavioral variability.
We used thermogenetic effectors to activate or inhibit circuit elements within the olfactory system, and
recorded the odor preferences of many individuals subject to this manipulation (Figure 4A,B). First we
targeted the contralateral serotonin-immunoreactive deutocerebral neurons (CSD; [34]) using two
independent Gal4 lines. These serotonin-positive neurons have post-synaptic compartments distributed
widely across the olfactory system and project axons into the antennal lobe contralateral to their cell
body. Again, applying a Bayesian framework to infer the effects of these thermogenetic manipulations
(Figure 4D; S8), we found that activating CSD neurons with dTRPA1 (an effector that depolarizes

neurons at high temperatures; [35]) had no effect on variability (Figure 4E).
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While acutely activating CSD may not have an effect on variability, the antennal lobe local neurons
(LNs) express multiple serotonin receptors [26], and are plausible candidate regulators of variability
because they have highly variable morphology across individuals [16,36]. We found that activating and
inhibiting different populations of LNs often had the effect of reducing behavioral variability. Specifically,
the following thermogenetic genotypes had variance-reducing effects at the induced temperature: for
each of the LN Gal4 lines: R14H04>dTRPA1, R14H04>Shibire® (probably), R46E11>dTRPA1,
VT046560>dTRPA1, and VT046560>shibire”. (The shibire® effector silences neurons by blocking
vesicular release at the restrictive temperature [37].) These Gal4 lines express in different subsets of
LNs of varying count and, presumably, varying physiology, but normal neuronal activity in LNs appears
to be required acutely for normal levels of behavioral variability. Lastly, we manipulated the activity of
tachykinin-expressing (Tk+) neurons (using the R61H07 Gal4 line [38]), which overlap with a specific
subset of LNs. We found that activating Tk+ cells with dTRPA1 probably increased variability, while
silencing them had no effect. Thus, the effect of thermogenetically perturbing Tk+ cells appears to be

inconsistent with the variability-reducing effect of perturbing LNs.

Neuromodulatory dynamics in the antennal lobe have been previously implicated in changing
odor-induced responses in a state-dependent manner. Specifically, short neuropeptide F (sNPF) and
tachykinin mediate starvation-dependent changes in glomerular responses which predict changes in
behavioral valence [34]. We hypothesized that subjecting flies to environmental stress by switching
them from our standard cornmeal/dextrose food to a reconstituted commercial mix might induce an
increase in behavioral variability, potentially as a bet-hedging response (i.e., when the environment
fluctuates, it may be adaptive to diversify stimulus responses, thereby increasing the chance that some
individuals implement behaviors suitable to the new environment; [22]). We reared flies on freshly
prepared cornmeal/dextrose food before giving them a “food shock” by switching them onto
reconstituted commercial flake food (Formula 4-24 from Carolina Biological Supply) for one day. As
controls, we switched them onto fresh rich food and, alternatively, fed them chronically (for three days)
on flake food. These manipulations had significant effects on the mean preference in an OCT-MCH
choice assay, but also showed higher variability in the food shock condition (Figure 5A). We used our
modeling framework to disentangle (Figure 5B) these effects, and found that food shock increased
variability substantially (Figure 5C). In contrast, flies chronically fed on F4-24 flake food since eclosion
showed lower variability than controls. Feeding the flies a-MW partially blocked the effects of the food
shock, reducing odor preference variability in the same direction as our earlier pharmacological

experiments (Figure 3A,D).
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Discussion

Odors evoke highly individualized perceptions in humans. We set out to study this in a genetic model
system, where high throughput behavioral automation and circuit-mapping tools could be brought to
bear. Using a custom-built, automated instrument in which flies walk freely in a linear chamber where
each half can be filled independently with a unique odor cue, we observed that flies exhibit idiosyncratic
odor preference behaviors (Figure 1). These individual preferences are evident in choices between two
odorants and in choices between odors and air, and persist for days, representing something like
odor-preference personality. Linear chambers with odorizable compartments have been previously
used to study learning and memory, and the authors reported that odor responses appeared
idiosyncratic [28], though other studies emphasized the consistency of individual responses [39]. A
challenge with this approach was the limited window in which flies expressed an odor preference
(roughly three minutes) before appearing to habituate [40] and ignore the odor boundary (Figure 1C).
We tried various protocols to rapidly dishabituate flies to the odors, with no success. Ultimately, this
meant that we could collect only a limited amount of data per fly. The modest day-to-day repeatability
(r=0.35) compared to other measures of fly personality [20-22] was likely attributable to the amount of
data we collected per fly. This constraint partly motivated our use of Bayesian modeling to assess the

effects of our manipulations.

Despite the well-known anatomical and functional stereotypy in the peripheral olfactory system, we
observed individuality in odor coding in the antennal lobe, the site of initial olfactory integration. The
Ca™ responses of projection neurons (across glomeruli) were idiosyncratic and persistent when the
same odor was presented to different flies (Figure 2). In some cases these differences were even
sign-reversing: an odor would activate a glomerulus in one fly but inhibit it in another. Some of the
observed individuality of coding may be due to artifacts of dissection, mounting or variable expression
of the Ca++ indicator. Still, the observation of qualitatively different glomerular responses, which are
consistent within the individual, is not easily attributable to such causes. Odor representations in the
PNs are more broadly distributed in odor space than ORN representations [41], and the circuit
dynamics that underlie this broadening may also contribute to distinguishing representations across
individuals. Establishing the significance of observed physiological differences may ultimately come
down to the ability to predict idiosyncratic behaviors from idiosyncratic coding, as this circuit may
produce consistent outputs even with idiosyncratic internal states [42]. For now, we believe that the
prevailing view that odor responses in the antennal lobe are highly stereotyped across individuals

should be tempered.
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Neuromodulatory axes have been previously implicated as affecting the amount of behavioral variability
exhibited by isogenic animals; disrupting serotonin increased variability in fly phototaxis [20], while in C.
elegans it decreased variability in locomotor activity [43]. Tyramine/octopamine had the opposite effect
in worms, so multiple modulatory axes appear to regulate variability. Indeed, we observed that Dop1R1
mutation strongly decreased odor preference variability (conversely, feeding flies L-DOPA increased
variability; Figure 3). Inhibiting serotonin had a dose-dependent effect of decreasing variability in odor
preference. The Bayesian framework we used to infer these effects also allowed us to estimate a
surprising environmental effect. Odor preference variability was consistently higher in the winter (Figure
S6), and this could be modeled as a linear function of the outdoor air temperature in Boston. This effect
was large despite our rearing flies in temperature- and humidity-controlled incubators and measuring
behavior in temperature- and humidity-controlled environmental rooms. We suspect that outdoor air
temperature is only a correlate of the true seasonal cause of fluctuating variability, for which there are

many possibilities including plant [44] or yeast [45] volatiles, or barometric pressure [46].

In flies chronically fed serotonin inhibitor, we observed that within-fly odor responses were more similar
than between-fly responses (Figure 3E-G), as was seen in control flies (Figure 2I). The distances
between odor responses were generally higher in a-MW-fed flies than controls, but these differences
were not statistically significant except perhaps on the fourth principal component of response variation
(Figure S4). Serotonin’s effect on behavioral variability may reside outside the antennal lobe, or our
imaging experiments may be underpowered to detect modulatory effects on odor coding. We found that
acutely activating the serotonin-immunopositive CSD neurons had no effect on behavioral variability
(Figure 4E), in contrast with the chronic pharmacological experiments, but consistent with reported
effects on AL activity [47]. The apparent long timescale of serotonin effects on behavioral variability
may reflect a role in regulating circuit structure, consistent with its role in neurodevelopment [36]. Many
cell types in the AL express a diversity of serotonin receptors [26] and may be intermediary in the effect
of serotonin pharmacological manipulation and behavioral variability. These include the LNs, which,
when silenced or activated resulted in lower odor preference variability (Figure 4; and, presumably, a
less sparse and regularized pattern of PN activity [48]). This suggests an endogenous role of increasing
variability, consistent with their morphological variability across individuals [16]. These effects varied in
magnitude by LN subpopulation, perhaps reflecting their physiological diversity. Indeed, LNs may have
heterogeneous effects on variability that compete with each other across the AL to determine odor

preference variability.

In addition to the variability-reducing effect of perturbing LNs, we identified two other manipulations that

reduced variability: serotonin pharmacological manipulation and mutation of Dop1R71. These
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experiments suggest that the endogenous role of these factors, with respect to odor preference, is to
increase the variability across individuals. Dop1R1 facilitates synaptic plasticity in the mushroom body
in support of associative conditioning [31,49], but we found that thermogenetic manipulations of the
mushroom body had no consistent effect on odor preference variability (Figure S8). So perhaps the
effect of Dop7R1 and L-DOPA is in another neuropil, such as the central complex, where it is known to
modulate locomotion [50,51]. Indeed, the reversal behavior seen at the odor boundary may be
supported by an idiothetic path-integration functionality thought to be implemented in the central
complex [52-54].

In previous work, we found that genetic variants [27] and circuit manipulations [8,10] predominantly
increased variability, as if we had disturbed mechanisms for suppressing variability. The results in this
study suggest that there may be evolved mechanisms to increase variability, perhaps as part of a
bet-hedging strategy [22,24]. Such a mechanism, under the control of the nervous system, could
respond rapidly to environmental fluctuations to diversify the behavior of a population and allow
individuals to exhibit behavioral phenotypes fit for the new environment. We tested this notion by
subjecting flies to a rapid change in their food, from their normal cornmeal/dextrose food to a
commercial flake food on which flies grow less successfully [55]. This food shock caused an increase in
odor preference variability, but only over short timescales. After three days on the flake food, variability
went back down. Feeding flies serotonin synthesis inhibitor during this food shock suppressed the
increase in variability (Figure 5). Taken together, these findings suggest that odor preference variability
is under the acute control of several specific neuron types in the AL, and possibly elsewhere, and over
longer timescales by modulatory pathways that may also affect odor-coding idiosyncrasy. These axes
of flexibility may facilitate bet-hedging strategies by which animals can respond to environmental

fluctuations with adaptive changes in their behavioral diversity.
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Figure 1 - Individual flies have idiosyncratic odor preferences

A)

C)

D)

F)

Schematic of the odor-preference experimental apparatus. Briefly, air is drawn in from the room,
cleaned and dehumidified, and pumped through the headspace of one of twelve odorant vials,
with the vial selected using computer-controlled solenoid valves. Mass-flow controllers
standardize the flow rate, and the odorized air stimuli are delivered to each end of a linear
behavioral arena. Flies walk freely in these arenas, and their position over time, in one odorant
or the other, determines their preference score. The arenas are back lit with diffuse IR light, and
fly position is tracked automatically from digital video.

Schematic of the linear behavioral arenas, into either half of which air odorized with an arbitrary
odorant flows. Air is evacuated from the sides of the midpoint of each arena, and the flow is
predominantly laminar, resulting in two odor “compartments” with a sharp boundary between
them. Flies typically walk back and forth in these arenas, and the fraction of time spent in a
reference odor compartment is computed as their preference score.

Kymographs showing the position in eight individual flies in eight arenas over time. Color blocks
indicate the three minute odor-choice period when the two odors, OCT (magenta) and MCH
(green), were delivered. Trajectory reversals at the choice boundary indicate the flies are
detecting and responding to the odorants and are largely absent in the pre-odor period (at left).
Corresponding preference scores are given at right.

Distribution of OCT-MCH preference scores across isogenic wild type animals (iso"""; see
methods). Blue line is the kernel-density estimate of the distribution during the odor-choice
period, with shaded area the 95% CIl as determined by bootstrapping. Gray line is the
corresponding kernel-density estimate during the pre-odor period. Dotted-line distribution
indicates the distribution expected under the null hypothesis that all flies exhibit behavior drawn
from identical distributions. The null distribution is computed by resampling individual bouts from
and back to the choice boundary. The observed distribution is significantly broader than the null
distribution (p < 0.001; by bootstrap resampling).

Scatter plot of individual OCT-MCH odor preferences on day 1 vs individual OCT-MCH odor
preferences on day 2. These are significantly correlated (r = 0.35; p < 0.0001) indicating that
individual odor preferences are stable over days. Line is the best linear fit. Shaded region is the
95% ClI of the linear fit.

Distribution of OCT-, 1-butanol- (BUT), and 2-heptanone- (HEPT) vs-air preference scores. Plot
elements as in (D). Bootstrapped p-values comparing null and observed distributions were all <
0.001.
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Figure 2 - Individual flies have idiosyncratic odor Ca** responses in the antennal lobe.

A)

C)

D)

F)

Schematic of the odor response volumetric imaging set-up. A similar apparatus as used in our
behavior assay (Figure 1A) is used to produce an odorized air stimulus under computer control.
This is delivered by tubing to a custom stage on which a fly is mounted to a sheet of foil. Its
body and head protrude above the foil into a pool of saline under the water-immersion lens of a
2-photon microscope.

Schematic of the odor stimuli delivered during an imaging session. First we presented two
12-odor panels, within which the order of odors is randomized in each panel and each odor was
presented for 6 seconds. After these panels we stimulated flies with alternating OCT and MCH
pulses, starting with OCT or MCH at random. OCT-MCH pairs were repeated up to five times or
until the responses ceased.

Schematic of the olfactory circuitry from the sensory periphery (olfactory receptor neurons
(ORNSs) in the antenna) to projection neurons (PNs) bearing odor information into the central
brain. LNs are local neurons: predominantly inhibitory interneurons that connect many different
sets of glomeruli and inhibit both PNs and LNs, often on the pre-synaptic terminals of ORNs.
Ca™ responses vs time of seven semiautomatically-segmented glomeruli responding to a pulse
of MCH.

Ca™ responses vs time of the DC3 glomerulus to the 12 odors of the stimulus panel.

Ca™ from one fly (fly #1). F1) Semiautomatically-segmented glomeruli of the antennal lobe.
Voxel clusters (different colors) determined by k-means clustering of odor responses across the
stimulus panels (see Methods). Glomerular identity was assigned manually based on the
morphology of the glomeruli. F2) Integrated Ca*™ responses to each odor (columns) of each
glomerulus (rows). Two matrices correspond to the two 12-odor panels. Grey cells indicate
glomeruli not identified by the semiautomated segmentation pipeline in this fly. Cells with dotted
and dashed borders show consistency intra-fly (i.e., between ftrials) and divergence inter-fly
(compare with cells in G and H). F3) Glomerular responses, as in F2, to the MCH trials of the
OCT-MCH panel. Colored symbol indicates these data in J) and K). F4) As in F3) but for
responses to MCH. Panels F, G and H share the common color axis.

As in F), but for fly #2.

As in F), but for fly #3.

Projection (left) onto principal components 1 and 2 of individual panel responses in the linear
space consisting of odor-glomeruli responses (i.e., the 15 glomerulus x 12 odor = 600
dimensional space in which the two matrices of F2 are two data points). Lines connect the two

points corresponding to the two 12-odor panels of each fly. n = 18 flies. Right: average distance



397 among intra-fly trials and inter-fly trials. Bars indicate +/- SEM calculated by 20,000-replicate

398 bootstrap resampling of individuals. p=0.012 by one-tailed resampling of individual flies.
399 J) As in [), but for responses to MCH (projected from the 15 glomerulus response space in which
400 e.g., F3 and F4 are five and four data points, respectively). Shaded regions are convex hulls
401 containing all the trials from each fly. p=0.002 for intra- vs inter-fly distance comparison.
402 K) As in J), but for responses to OCT. Shaded regions are convex hulls containing all the trials from

403 each fly. p<0.001 for intra- vs inter-fly distance comparison.
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Figure 3 - Neuromodulation of behavioral individuality

A)

C)

D)

F)

Representative experimental distributions of OCT-MCH preference scores across isogenic wild
type animals in control conditions (gray) and fed pharmacological manipulators of serotonin
levels (brown). Lines are kernel density estimates of the distributions; shaded areas are the
95% Cls of the density estimates as determined by bootstrapping. Experiments: flies fed 20mM
a-MW for three days (top), 40mM a-MW for three days (middle) and 50mM 5-HTP for three days
(bottom). Gray lines are matched control conditions. Shaded areas are the 95% Cls of the
density estimates as determined by bootstrapping.

As in A) for manipulations of dopamine signaling. Top: Kernel-density estimates of the
behavioral distribution of Dop1R1%%7¢ flies bearing a mutation in the Dop7R1 dopamine receptor
gene and a genetic control. Bottom: observed distributions for flies fed 5mg/mL L-DOPA or
vehicle control for three days.

Model used to estimate the effects on odor preference variability of neuromodulation
manipulations. Briefly, L is the likelihood of observing a particular odor preference p, and is
distributed as a Normal distribution (modified to account for the data censoring that happens
when preference is measured on a 0-1 range) with mean and standard deviation terms that
depend on each animal’s genotype, environment, the interaction of genotype and environment,
and a term to account for seasonal effects of external air temperature. The standard deviation
also has a term, ¢, that depends on the distance traveled by the fly and accounts for the
increased uncertainty in estimating odor preference for inactive flies. See Methods for full
explanation.

Posterior distributions on the model effects associated with each neuromodulator manipulation.
Gold lines indicate the mean of the posterior, and white lines the edges of the 95% credible
interval. Posterior distributions heavily overlapping 0 (dotted line) indicate no effect.

Left: Projection onto principal components 1 and 2 of individual panel responses in the linear
space consisting of odor-glomeruli responses (as in Figure 2I-K). Right: average distance
among intra-fly trials and inter-fly trials. Bars indicate +/- SEM calculated by 20,000-replicate
bootstrap resampling of individuals. The means within each treatment (intra- vs. inter-) are
significantly different (p=0.011 and p=0.024) by one-tailed resampling. The means between
treatments means are not statistically significant (0.25 < p < 0.35). Black indicates control flies,
brown flies fed 40mM a-MW for three days.

As in E) but with points representing responses to MCH in the 15 glomerular space containing
MCH and OCT responses (as in Figure 2J and K). As in E), (intra- vs. inter-) means are

statistically significant within control treatment (p = 0.004) but not statistically significant within
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a-MW treatment (p = 0.093). The differences in means between treatments means are not
statistically significant (0.34 < p < 0.40).

G) As in F) but with points representing responses to OCT in the 15 glomerular space containing
MCH and OCT responses (as in Figure 2J and K). As in E) and F), means are significantly
different within (p < 0.001) but not between (0.34 < p < 0.39) treatments.
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Figure 4 - Local neurons in the antennal lobe modulate individuality of odor preference

A)

C)

D)

Confocal micrographs of expression patterns targeting the serotonin-immunoreactive CSD
neurons, three different populations of local neurons and tachykinin-positive neurons. Red
background stain is anti-nc82 staining synaptic active. (The red channel of the VT046560 image
is also stained for anti-DLG [56].) Cyan is mCD8-GFP [57] driven by the Gal4 line denoted.
Images of all Janelia FlyLight Gal4 lines (all images except that of VT046560) reproduced and
modified with permission from the Janelia FlyLight team.

Kernel density estimates of the distribution of OCT-MCH preference scores for transgenic
animals expressing the thermogenetic activator dTRPA1, which depolarizes neurons at 32°C,
under the control of each Gal4 driver. Gray distributions are at the permissive temperature
(23°C). Gold distributions are at the restrictive temperature (29°C).

As in B), but for animals expressing the thermogenetic inhibitor of vesicle release shibire® at
permissive (25°C; gray) and restrictive temperatures (32°C; blue).

Model used to estimate the effects on odor preference variability of these neural circuit
manipulations. The terms of the model are the same as in Figure 3C. Here, the experimental
condition terms (e) refers to the temperature of the experimental room, and the genotype terms
(9) account for animals of the background genotype (iso*"""), parental genotype controls
(Gal4/+, UAS-shibire®/+ and UAS-dTRPA1/+), and experimental F.s (Gal4/UAS-shibire® and
Gal4/dTRPAT). The g*e term accounts for the thermogenetic interaction of F, genotypes and
temperature.

Posterior distributions of the effect on odor preference variability of silencing (blue) or activating
(gold) neurons expressed in each Gal4 line using shibire® or dTRPA1, respectively. Gold lines
indicate the mean of the posterior, and white lines the edges of the 95% credible interval.

Posterior distributions heavily overlapping 0 (dotted line) indicate no effect.



C o} effects
chronic food stress

A chronic food stress
acute food stress
acute food stress + a-MW

acute food stress

BN |

acute food stress
a-MW 40mM

density

0 odor pref. score !

B l:(Pi) = Mens(piv i, Ui)
-0.02 0 0.02 0.04

i = o+ pe, + fuu(T:)
o} = o+ aé‘ + fo(:)+€(d;)  odor preference variability effect (variance)



467
468
469
470
471
472
473
474
475
476
477

Figure 5 - Variability of odor preference is modulated by changes in diet

A)

C)

Kernel-density estimates of the behavioral distribution of flies grown chronically on F4-24 flake
food (gray), subject to a food stress treatment in which flies were transferred from
cornmeal/dextrose food to F4-24 flake food (blue), and flies subject to the same food stress
treatment but with 40mM a-MW in both food sources (teal). Shaded areas are 95% Cls.

Model used to estimate the effects on odor preference variability of diet manipulations. As these
experiments were all conducted with control genotype (iso"""") animals, there are no g terms
here compared to the models in Figure 3C and 4D. Otherwise, the terms are comparable.
Posterior distributions of the effect of diet manipulations. Gold lines indicate the mean of the
posterior, and white lines the edges of the 95% credible interval. Posterior distributions heavily

overlapping 0 (dotted line) indicate no effect.
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Methods

Data and code repositories
All data needed to reproduce our findings and figures, along with all analysis code is available for

download at htip://zenodo.org/REFREF. These files are also hosted, along with a readme companion

page at hitp://lab.debivort.org/odor-variability. Raw imaging files are available on request to the

corresponding author.

Fly stocks

The following stocks were obtained from the Bloomington Drosophila Stock Center:
P{GMR14C11-GAL4}attP2 (BDSC #49256), P{GMR60F02-GAL4}attP2 (#48228),
P{GMR61H07-GAL4}attP2 (#39282), P{GMR14H04-GAL4}attP2 (#48665), P{GMR46E11-GAL4}attP2
(#50272), UAS-dTrpA1 (#26263), and P{20XUAS-IVS-GCaMP6m}attP40 (#42748). The
VT046650-GAL4 (VDRC ID #204702) driver was obtained from Vienna Drosophila Resource Center,
and the GH146-GAL4 and Dop71R1 lines were generously provided by Y. Zhong and J. Dubnau,
respectively. The PBac{20XUAS-TTS—shi[ts1]-p10}attP2 line and the split-GAL4 line “MB010B”
(13F02-p65ADZp/Cy0; 52H09-ZpGdbd) were generously provided by G. Rubin and Y. Aso.

Isogenic line iso*""

KH11

Our main control strain, the isogenic Drosophila line iso""'', was created by inbreeding the

balancer-isogenized w(isoCJ1) strain of w''"®

([58]; shared by J. Dubnau) for 10 generations with
full-sibling crosses. To equilibrate genetic background, all mutant and transgenic lines listed above were
outcrossed to the iso" line for at least 10 generations before being used in any imaging or odor

preference experiments.

Fly rearing

Unless otherwise indicated, experimental flies were reared in a Drosophila incubator (Percival Scientific
DR-36VL) under controlled conditions (25°C, 40% RH, 12:12h light:dark cycle) and fed a standardized
cornmeal/dextrose medium [59] supplemented with activated yeast. Flies used for behavior were
cultured under low-density conditions by allowing ~10 mated females 48-72 hours to lay eggs in a

500ml culture bottle containing folded Kimwipes and ~200m| medium.

Behavioral apparatus
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The custom designed behavioral apparatus was constructed of Accura 60 plastic using
stereolithography (In’Tech Industries) fabrication. Stainless steel hypo tubing (Small Parts) was used to
connect the apparatus with Teflon odor tubes (ID: 0.7mm). The apparatus consisted of 15 parallel
tunnels (50mm long, 5mm wide, 1.3mm tall), separated by 5mm spacers. Odorized or clean air was
delivered through inlet ports at each end of the tunnel and streams vented to the room through exhaust
ports in the center choice zone. Clear acrylic was used as a base and lid for the apparatus. The lid was
clamped in place above the apparatus to ensure an air-tight seal during odor presentation. Odors were
presented using proportional air blending to control odor concentration. Air dilutions could be made
independently for each side of the apparatus. A custom 15-way PEEK manifold was used on each side
to split the odorized flow equally between 15 tunnel inlets. A final valve (SH360T041; NResearch) was
used immediately upstream of each manifold to quickly switch between pure dehumidified air and the
odorized stream. Based on simulation results (details below), airflow through the tunnels is expected to
be laminar, and to form a sharp boundary between the two odor compartments at the middle of the

corridor.

To maintain a consistent molar flux of odorant at different experimental temperatures, we used digital
mass flow controllers to deliver 0.1SLPM air to the end of each tunnel. Because the density of a gas is
a function of temperature, the volumetric flow of air increases with temperature to maintain a constant
mass flow. Therefore, the velocity of air flowing through the tunnels increases with temperature, but the
molar flux of odorant over the fly stays constant (ignoring changes in vapor pressure). The laminar air
velocity in the direction of the center port was approximately 2.6cm/sec at 25°C, well within the range of

wind speeds experienced by insects in a natural environment [60].

A three-dimensional Computational Fluid Dynamics (CFD) analysis was performed using Autodesk
CFD (Autodesk, Inc., San Rafael, CA) software to model the flow of gas through the tunnels. CFD
analysis revealed that flow through most of the length of each tunnel is laminar, with some turbulent
flow in the center and near the inlet ports on each end (Figure S1A). A scalar mixing simulation, using a
simulated tracer gas, revealed a steep mixing gradient for odor concentration, limited almost entirely to
the center choice zone where the opposing odor streams meet (Figure S1B). These results are in

general agreement with the behavior we observe.

Odor delivery
For imaging experiments, odors were delivered using a 12-channel serial-air-dilution olfactometer
described in [61]. For behavioral experiments, odors were presented using a dual-path odor delivery

system integrated into the behavioral apparatus. In both devices, desiccated air was filtered through an
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activated carbon trap (Agilent HT-200) before passing through digital mass flow controllers (MFCs;
Alicat Scientific). For each odorant, 5ml of pure odorant was placed with a folded strip of filter paper in a
40ml glass vial fitted with a custom PTFE cap with inert fittings. The saturated headspace from these
vials was combined with a variable carrier stream to produce between 10% and 20% saturated vapor,
the range in which we observe a linear input-output relationship. All tubing was pure PTFE or PTFE
coated for inertness. A photoionization detector (200B miniPID, Aurora Scientific) was used to
periodically monitor the concentrations of test odors being delivered. The following odorants were
obtained from Sigma-Aldrich: 2-heptanone (CAS#: 110-43-0), 1-pentanol (71-41-0), 3-octanol
(589-98-0), hexyl-acetate (142-92-7), 4-methylcyclohexanol (589-91-3), pentyl-acetate (628-63-7),
1-butanol (71-36-3), ethyl-lactate (97-64-3), geranyl acetate (105-87-3), and 1-hexanol (111-27-34).
Citronella and peppermint essential oils were purchased from Aura Cacia (items #191112 and #188840),
and 200 proof ethanol from Decon Labs (V1001).

Behavior imaging

Flies were illuminated from beneath using a modified 15-inch laptop display panel (LP150X2; LG
Philips) equipped with a high-density infrared LED array (peak emission 880nm). This approach
produces homogeneous backlighting for high-contrast silhouette detection at a wavelength not visible to
the fly. The screen was placed approximately 4cm below the behavioral apparatus to avoid heating the
flies. We used a high-resolution CMOS camera (Point Grey Firefly MV USB) equipped with a zoom lens
and longpass filter (Kodak Wratten Filter #87C) to collect images at 60Hz.

Behavior-tracking software

Custom MATLAB (The MathWorks, Inc.) routines were used to record and analyze the behavior of flies
and control odor delivery. Tunnels and flies were automatically detected using 2D cross-correlation to
align tunnel and fly outlines to template images. During an odor experiment, each frame was
background subtracted to yield the silhouettes of the flies being assayed. For each time point, the
centroid position, orientation, and major axis length of each silhouette were calculated and stored for

offline analysis.

Behavioral experiments

Flies to be assayed for behavior were collected within 24 hours of eclosing and placed into a fresh vial
containing fresh cornmeal/dextrose medium. Strictly, only females were used for behavior and imaging
experiments. Vials each contained approximately 30 female flies, and were kept in the temperature and
humidity-controlled incubator for 3 days, so that all flies were 3-4 days post-exclusion when tested.

Flies were individually aspirated into the behavioral apparatus through a small hole in the lid. No
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anesthesia was used at any point on flies used in behavioral experiments. To minimize external causes
of behavioral variability, odor preference assays were performed in an isolated temperature-controlled
environmental chamber in total darkness. Behavioral assays began immediately after all flies were
loaded and the lights were turned off. Each odor preference experiment ran for a total of 6 minutes and
30 seconds: 3 minutes of clean air, 3 minutes of air mixed with odorant, and 30 seconds of clean air
post-odorant. The apparatus was partially disassembled and wiped down with absolute ethanol
between experiments to remove any fly-deposited contamination. Prior to running behavioral
experiments we adjusted odor concentrations so that the mean odor preference for OCT would be near
0.4. This was done by measuring the mean odor preference of a small number of iso*""" flies prior to
the behavior experiment, then adjusting concentrations via flow controllers and remeasuring mean

preference.

Preference persistence experiments

Several experiments required storing and maintaining identities of individual flies across multiple days.
For this we used FlyPlates (FlySorter LLC, Seattle, WA), which are modified 96-well plates with a mesh
top and bottom. The plates were placed on a bed of cornmeal/dextrose fly medium and individual flies
were aspirated into and out of each well, allowing identities to be maintained across multiple days. The
food was replaced daily. To remove any potential contribution of between-tunnel differences in stimulus
delivery to the across-day correlation, the tunnel assignment for each fly was randomly chosen each

day.

Gal4 expression pattern images
Panels modified with permission from FlyLight images (Figure 4A) were downloaded from
http://flweb.janelia.org/cgi-bin/flew.cgi. Confocal micrographs of expression patterns targeting, the red is

the background stain for anti-nc82, and cyan is mCD8-GFP.

Calcium Imaging fly prep

Flies were collected from population bottles within 24 hours of eclosion. Those flies were put into vials
with standard cornmeal/dextrose fly food for approximately 72 hours. Prior to mounting, single flies
were cold anesthetized by being sealed in a plastic tube and submerged in ice. The anesthetized fly
was then placed into a custom platform that exposed the fly head for removal of the cuticle and calcium
imaging of the antennal lobe while keeping the antennae dry and exposed beneath the platform. The
platform was a 3D printed 80mm diameter circle with a 5mm by 5mm square recessed into the center.
At the bottom of the recess was a thin aluminum sheet (0.5mm) with a laser cut hole which allowed for

the fly’s head and thorax to be wedged between to stabilize the fly without damage. The fly’s head was
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fixed to the stage by applying a small amount of UV (Loctite AA 3972) curing glue around the edge of
both eyes to secure it the stage. The proboscis was then carefully extended and waxed to the bottom of
the stage to further prevent movement of the head. We used a saline solution, as described in the
methods of [62], to cover the exposed fly head and thorax and filling the small recessed section of the
mounting stage. We used a sharpened 32-gauge needle to cut the cuticle of the fly and expose the

antennal lobe.

Calcium imaging

GCaMP6m-expressing flies were imaged using a custom-built galvanometer-scanning two-photon
microscope and ultrafast Ti:sapphire laser (Spectra-Physics Mai Tai) tuned to 930 nm. The microscope
was controlled with a customized build of Scanimage 3.8 software (Vidrio Technologies, [63]). Custom
MATLAB scripts were used to control stimulus delivery during imaging. Fast volume-scanning was
performed using a piezoelectric objective scanner (Physik Instrumente PIFOC PD72Z4), capable of
continuous sawtooth movement in the Z dimension. Each volume was imported as a tiff stack and
smoothed with a 3-dimensional gaussian kernel with standard deviation of 3 in all dimensions. A
background was selected for every odor presentation by pooling all volumes and taking pixels with
intensity below the 25th percentile. This background mask was applied to the volumes to get a mean
value across time for background subtraction. The volumes represented by a 3-dimensional matrix of
voxel values were converted to a one-dimensional vector and stacked together across time to create
the matrix for k-means clustering (n-voxels by k-time points). Each voxel was z-scored across time and
k-means clustering was run using MATLAB R2018a’s default KMEANS function with k = 36 and
replicates = 15. For each cluster output by k-means, we applied a lenient size criterion that included
only clusters composed of between 300 and 30,000 voxels. We then manually sorted through the
remaining clusters to pick those that look reasonable in terms of geometry, size, and location, using a
3-dimensional in-vivo Drosophila antennal lobe atlas as a guide [64]. The selected clusters represented
the glomeruli for each fly. This glomerulus mask was applied to the fly’s odor block to yield AF/F traces
for each glomerulus-odor pair within the fly. Within a single fly, separate k-means glomeruli masks were
generated and applied for each odor presentation block (12-odor block-1, 12-odor block-2, and the
block of OCT/MCH presentations). The matrix for principal component analysis was created by taking
the integrated sum of AF/F for seconds 7-13 for each glomerulus-odor pair in an odor block, and
z-scoring across flies. Whenever a glomerulus cannot be identified within a fly, the associated
glomerulus-odor values for that fly are considered missing data. For our PCA matrix, we replaced any

missing data within a fly with the mean across all flies of that specific odor-glomerulus value.

Thermogenetics
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The thermogenetic effectors, UAS-shibire® and UAS-dTrpA1, were obtained from Bloomington Stock
Center and backcrossed for at least ten generations into our isogenic line iso"'"". For behavioral
experiments, each effector was crossed to a GAL4 driver line and F,s were used for the experiment.
TrpA1 F,s were tested at 23°C (permissive temperature control condition) or 29°C (restrictive; TRPA1
active). Shibire® F.s were tested at 25°C (permissive temperature control condition) or at 32°C
(restrictive; Shibire™ blocking vesicle release). Animals in the restrictive condition were incubated for 30

minutes at 32°C prior to testing.

Pharmacology

Flies used for drug treatment experiments were placed on food that was supplemented with either
a-MW, 5-htp, or L-DOPA. To create the drug food mixture, the drug was mixed into water solution and
diluted to the appropriate concentration with melted cornmeal/dextrose standard medium or F4-24 flake
food, then placed into an empty plastic vial (Genesee scientific 32-116). The flies were flipped onto

freshly made drug-supplemented food daily for the 72 hours post eclosion.

Food-induced environmental stress

Formula 4-24 (F4-24) prepared food mix was purchased from Carolina Biological Supply Company
(item #173120). Portions of this dry media mix were processed in a coffee grinder to achieve a uniform
density and mixed with tap water with a ratio of 1:1. For the food shock experiments we placed newly
eclosed flies onto cornmeal/dextrose medium for 48 hours, then switched to F4-24 food for the

remaining 24 hours prior to evaluating behavior.

Behavioral analysis

All behavioral analyses were performed using R-3.5.1 [65] or MATLAB R2018b. Behavioral analyses
consisted of both model-based (estimating effects of experimental manipulations) and non model-based
(individuality scores and distribution visualizations) inference. For non model-based analyses we
included only flies that met a minimum activity threshold of 25 cm of distance traveled during the odor
period, since highly inactive flies can substantially skew the analysis. For model-based analyses we
adjust for group differences in activity level, so we included all flies that entered the choice zone of the
tunnel at least once during the experiment.

Individuality scores were calculated as Var, - Var,,. Though MAD as a measure of dispersion is

null*

preferable to variance, as discussed below, we used variance to estimate individuality because its

additive property makes the numerical difference between observed and null a meaningful quantity. The
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individuality score is interpretable as the amount of additional variance, supplied by stable inter-fly

preference differences, beyond that expected from sampling error alone.

The expected “null model” variance was estimated from a distribution derived by Monte Carlo
simulation. Briefly, we calculated a transition matrix representing the proportion of times flies crossed
from one odor into the other, or entered the choice zone and then returned to the side they came from.
Then we segmented tunnel position traces into a series of bout times - the time between entering an
odorized portion of the tunnel and leaving it, and pooled them together according to odor. For a given
group of flies, the collection of odor bouts preserves the overall mean preference, but discards the
correlation of bouts observed within a fly. A population of virtual “Markov flies” equal to the number of
observed flies was generated and each virtual fly was assigned an initial “odor choice.” For each virtual
fly, a Markov chain of choices was generated from the empirical transition matrix, and each virtual
choice was paired with an occupancy time sampled from the pool of bout times for its respective odor.
Samples were repeatedly taken from the chain until 3 minutes of simulated behavior was collected for
each fly. From each Markov fly’s simulated time series, we calculated the proportion of time spent in the
reference odor and collected these preference scores across the virtual population. This procedure was
repeated 1,000 times and the variance of simulated scores across each virtual population was
calculated. From this distribution of simulated variances, 10,000 bootstrap replicates were taken and
used to estimate confidence intervals and p-values of the null hypothesis test of no difference between

the variance of the observed and the simulated preference scores.

Modeling of behavioral effects

Our goal was to measure the effect size of specific experimental manipulations on inter-fly odor
preference variability. Isolating these effects is difficult for several reasons. First, observed behavioral
variance is confounded by sampling error. To minimize the impact of sampling error, we could simply
sample odor responses for a longer period of time; however, after several minutes, most flies adapt to
the stimuli and behaviorally habituate. Second, manipulating environmental temperature and neural
activity may produce changes in overall locomotor activity. This issue directly impacts the sampling
error issue, since less active animals will have fewer chances to cross the center and sample both
odors, thus biasing preference scores toward extreme values. Third, our measure of preference, a
proportion, is bounded on [0,1], which tends to artificially deflate estimates of dispersion. Indeed,
variance is a poor measure of dispersion on bounded distributions because it is not robust to
accumulated observations at the extrema. Furthermore, we believe that it is unlikely that two flies with a
measured odor preference of e.g., 1, truly have the exact same magnitude of preference. Rather, our

assay is incapable of resolving these differences because of sampling limitations, a phenomenon
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generally known as data censoring. These issues are further exacerbated when the mean is far from
0.5, causing more flies to accumulate at values of 0 or 1, thereby producing an artificial dependence of
dispersion on the central tendency. Thus, we must be concerned that experimental manipulations which
affect the mean can amplify the censoring effect and produce spurious apparent effects on variance.
One possible way to address these concerns is to use non-parametric measure of dispersion, e.g.,
MAD or IQR, as done previously [20]. However, that only addresses the issue of measuring dispersion
in a robust way. To address the other issues we must control for the confounding effects of overall

locomotor activity on measured preference.

We used a linear modeling approach to address these challenges by jointly modeling the main effects
of experimental manipulations, their interactions, and confounding “nuisance” parameters on both the
mean and variance of odor preference scores. We developed a novel censored heteroscedastic
regression model, where experimental and environmental factors exert their effects on odor preference
distribution independently and in combination. For example, preference variability in experiments
utilizing thermogenetic reagents was potentially affected by two factors we would like to control for
(genotype and experimental temperature) and by their interaction, which is the effect size we are
actually interested in estimating [66]. The likelihood, L, of observing a particular odor preference, p, is

calculated from a censored Normal distribution:
E(pz) - Ncens (pi, i, Oi)

which assumes that the odor preference is a latent continuous variable and that observed values of 0
and 1 are really censored observations of preference values that extend beyond the observable range
[0,1]. The formulation of odor preference as a censored latent variable makes the estimation of
variance in the model insensitive to changes in the mean. The expected mean, u, and standard

deviation, o, of odor preference for fly i
i = o + Mg, + He; + Hgixe; + f#(Ti)
2 2 2 2 2
0-1 - 0-0 + 0-91‘ + 0-67; —|_ Ogi*ei + fU(T@) + E(dl)
depend on animal /'s genotype, environment, the interaction of genotype and environment (coded as

binary indicator variables), and a term to account for seasonal effects of external air temperature (a

scaled continuous variable). The standard deviation has an offset term, ¢, defined for a given fly as:
€ = axdist? + ¢

that depends on the distance, dist, traveled by fly i during the odor period and accounts for the
increased uncertainty in estimating odor preference for inactive flies. The relationship between ¢ and

dist was determined empirically by fitting a function, of the form shown in Eq. 3, to the pre-odor



726
727

728
729
730
731
732
733
734
735

736
737
738
739
740
741
742

743
744
745
746
747
748
749

750
751
752
753
754

variance-by-distance plot of a pilot dataset (Figure S1D). The coefficient values used in all three models
were a = 2.365, b =-0.651, ¢ =-0.0077.

As shown above, we included two nuisance terms in the model to adjust for uncontrolled sources of
variability: an offset to the variance based on the distance traveled during the odor period, and an
additional uncontrolled environmental variable (the average air temperature in Boston) that was
observed to have a significant association with preference variability (Figure S6B,D). Air temperature
data recorded at the Boston Logan International Airport weather station (WBAN:14739) were
downloaded from the NOAA Climate Data Online website [66] for the time period encompassing our
behavior experiments. Temperature values were scaled to have a mean of 0 and a standard deviation
of 1.

Bayesian model fitting

The model described above may be fit using maximum likelihood estimation or by using Markov Chain
Monte Carlo (MCMC) simulation within a Bayesian framework. We chose to use the Bayesian
approach, since the inclusion of reasonable prior expectations can provide parameter regularization
and aid in model identifiability. Models were programmed in the Stan modeling language [67,68] and
implemented using the RStan library for R [69]. Model fitting was performed on the Odyssey cluster

supported by the FAS Division of Science, Research Computing Group at Harvard University.

For each model, 32 MCMC chains were run in parallel using the No-U-Turn-Sampler implementation of
the Hamiltonian Monte Carlo algorithm [70]. Briefly, 1,500 samples were drawn from each chain, and
the first 1,000 warm-up samples were discarded. The remaining 500 samples from each chain were
aggregated, for a total of 16,000 samples taken from the joint posterior. Several within-chain and
between-chain diagnostic criteria were monitored for each model, in accordance with current best
practices [71]. These diagnostics did not indicate any pathological MCMC behaviors for any of the

models reported.

A series of pilot experiments using the control genotype (iso*""") under baseline conditions was used to
update an initial set of vague priors on the mean intercept, variance intercept, and environmental air
temperature coefficient terms in the model (n = 3,722 flies total). The posterior standard deviations
(multiplied by a factor of ten to reflect more uncertainty) and means from this model were used as prior

parameter values for their corresponding terms in subsequent models:
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po ~ N(0.5,0.25)
ot ~ N'(0.012,0.01)
fu ~ N(-0.034,0.03)
f» ~ N(-0.008,0.01)

For all regression coefficient priors, we used a Normal distribution, centered at 0, and selected

weakly-informative, but reasonable, values for the scale:
Hg ~ N(0,0.2)
pe ~ N(0,0.2)
Hgse ~ N(0,0.2)
0'5% ~ N(0,0.01)
oz ~ N(0,0.01)
62 ~ N(0,0.01)

The overall goal for selecting priors was simply to provide some degree of regularization for parameter
estimates and to aid in model identifiability, rather than to influence posterior estimates based on any
prior expectations about specific effects. We fit a total of three separate regression models for: 1)
neuromodulation experiments shown in Figures 3 and 5 (n = 5,327 flies total); 2) thermogenetic
experiments using the dTrpA1 effector in Figure 4 (n = 5,285); and 3) thermogenetic experiments using
the shi®’ effector in Figure 4 (n = 2,027).

Kernel Density Estimates (KDE) of odor preference distributions

The KDEs of odor preference were estimated in MATLAB using the KSDENSITY function with a
Gaussian kernel. Kernel bandwidth was automatically chosen using the default optimal method for
normal densities, and censoring was applied at values of 0 and 1, the upper and lower bounds of

observable odor preference scores.

Acknowledgements

We are thankful to Katrin Vogt and Carolyn Elya for helpful comments on the manuscript. We also thank
Ed Soucy and Joel Greenwood of Harvard’s CBS Neuroengineering core for their assistance with
construction of the two-photon microscope, along with Jess Kanwal and Kyobi Skutt-Kakaria for

insightful discussions. BdB was supported by a Sloan Research Fellowship, a Klingenstein-Simons



773
774

775
776

Fellowship Award, a Smith Family Odyssey Award, and the National Science Foundation under grant
no. 10S-1557913. GT was supported by the Howard Hughes Medical Institute.

Conflicts

BdB is a scientific advisor for FlySorter, LLC. The authors have no additional conflicts.



777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

References

1. Keller, Andreas, Richard C. Gerkin, Yuanfang Guan, Amit Dhurandhar, Gabor Turu, Bence Szalai,
Joel D. Mainland, et al. 2017. “Predicting Human Olfactory Perception from Chemical Features
of Odor Molecules.” Science 355 (6327): 820-26.

2. Koulakov, Alexei A., Brian E. Kolterman, Armen G. Enikolopov, and Dmitry Rinberg. 2011. “In Search
of the Structure of Human Olfactory Space.” Frontiers in Systems Neuroscience 5 (September):
65.

3. Secundo, Lavi, Kobi Snitz, and Noam Sobel. 2014. “The Perceptual Logic of Smell.” Current Opinion
in Neurobiology 25 (April): 107—15.

4. Distel, H., S. Ayabe-Kanamura, M. Martinez-Gémez, |. Schicker, T. Kobayakawa, S. Saito, and R.
Hudson. 1999. “Perception of Everyday Odors--Correlation between Intensity, Familiarity and
Strength of Hedonic Judgement.” Chemical Senses 24 (2): 191-99.

5. Keller, Andreas, Margaret Hempstead, Iran A. Gomez, Avery N. Gilbert, and Leslie B. Vosshall. 2012.
‘An Olfactory Demography of a Diverse Metropolitan Population.” BMC Neuroscience 13
(October): 122.

6. Keller, Andreas, and Leslie B. Vosshall. 2016. “Olfactory Perception of Chemically Diverse
Molecules.” BMC Neuroscience 17 (1): 55.

7. Keller, Andreas, Hanyi Zhuang, Qiuyi Chi, Leslie B. Vosshall, and Hiroaki Matsunami. 2007. “Genetic
Variation in a Human Odorant Receptor Alters Odour Perception.” Nature 449 (7161): 468—72.

8. Mainland, Joel D., Andreas Keller, Yun R. Li, Ting Zhou, Casey Trimmer, Lindsey L. Snyder, Andrew
H. Moberly, et al. 2014. “The Missense of Smell: Functional Variability in the Human Odorant
Receptor Repertoire.” Nature Neuroscience 17 (1): 114-20.

9. Menashe, Idan, Tatjana Abaffy, Yehudit Hasin, Sivan Goshen, Vered Yahalom, Charles W. Luetje,
and Doron Lancet. 2007. “Genetic Elucidation of Human Hyperosmia to Isovaleric Acid.” PLoS
Biology 5 (11): e284.

10. Couto, Africa, Mattias Alenius, and Barry J. Dickson. 2005. “Molecular, Anatomical, and Functional
Organization of the Drosophila Olfactory System.” Current Biology: CB 15 (17): 15635-47.

11. Fishilevich, Elane, and Leslie B. Vosshall. 2005. “Genetic and Functional Subdivision of the
Drosophila Antennal Lobe.” Current Biology: CB 15 (17): 1548-53.

12. Laissue, Philippe P., and Leslie B. Vosshall. 2008. “The Olfactory Sensory Map in Drosophila.”
Advances in Experimental Medicine and Biology 628: 102-14.

13. Lin, Hui-Hao, Jason Sih-Yu Lai, An-Lun Chin, Yung-Chang Chen, and Ann-Shyn Chiang. 2007. “A
Map of Olfactory Representation in the Drosophila Mushroom Body.” Cell 128 (6): 1205-17.

14. Jefferis, Gregory S. X. E., Christopher J. Potter, Alexander M. Chan, Elizabeth C. Marin, Torsten
Ronhlfing, Calvin R. Maurer Jr, and Liqun Luo. 2007. “Comprehensive Maps of Drosophila Higher



812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation.” Cell 128 (6):
1187-1203.

Fisek, Mehmet, and Rachel I. Wilson. 2014. “Stereotyped Connectivity and Computations in
Higher-Order Olfactory Neurons.” Nature Neuroscience 17 (2): 280-88.

Chou, Ya-Hui, Maria L. Spletter, Emre Yaksi, Jonathan C. S. Leong, Rachel I. Wilson, and Liqun
Luo. 2010. “Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila
Antennal Lobe.” Nature Neuroscience 13 (4): 439—-49.

Seki, Yoichi, Jirgen Rybak, Dieter Wicher, Silke Sachse, and Bill S. Hansson. 2010. “Physiological
and Morphological Characterization of Local Interneurons in the Drosophila Antennal Lobe.”
Journal of Neurophysiology 104 (2): 1007-19.

Tanaka, Nobuaki K., Keita Endo, and Kei Ito. 2012. “Organization of Antennal Lobe-Associated
Neurons in Adult Drosophila Melanogaster Brain.” The Journal of Comparative Neurology 520
(18): 4067—-4130.

Kim, Susy M., Chih-Ying Su, and Jing W. Wang. 2017. “Neuromodulation of Innate Behaviors in
Drosophila.” Annual Review of Neuroscience 40 (July): 327—48.

Kain, Jamey S., Chris Stokes, and Benjamin L. de Bivort. 2012. “Phototactic Personality in Fruit
Flies and lts Suppression by Serotonin and White.” Proceedings of the National Academy of
Sciences of the United States of America 109 (48): 19834—309.

Buchanan, Sean M., Jamey S. Kain, and Benjamin L. de Bivort. 2015. “Neuronal Control of
Locomotor Handedness in Drosophila.” Proceedings of the National Academy of Sciences of
the United States of America 112 (21): 6700-6705.

Kain, Jamey S., Sarah Zhang, Jamilla Akhund-Zade, Aravinthan D. T. Samuel, Mason Klein, and
Benjamin L. de Bivort. 2015. “Variability in Thermal and Phototactic Preferences in Drosophila
May Reflect an Adaptive Bet-Hedging Strategy : BET-HEDGING EXPLAINS THERMOTACTIC
VARIABILITY.” Evolution; International Journal of Organic Evolution 69 (12): 3171-85.

Todd, Jeremy G., Jamey S. Kain, and Benjamin L. de Bivort. 2017. “Systematic Exploration of
Unsupervised Methods for Mapping Behavior.” Physical Biology 14 (1): 015002.

Honegger, Kyle, and Benjamin de Bivort. 2018. “Stochasticity, Individuality and Behavior.” Current
Biology: CB 28 (1): R8-12.

Linneweber, G., M. Andriatsilavo, S. Dutta, and L. Hellbruegge. 2019. “A Neurodevelopmental
Origin of Behavioral Individuality.” bioRXxiv.
https://www.biorxiv.org/content/10.1101/540880v1.abstract.

Sizemore, Tyler R., and Andrew M. Dacks. 2016. “Serotonergic Modulation Differentially Targets
Distinct Network Elements within the Antennal Lobe of Drosophila Melanogaster.” Scientific
Reports 6 (November): 37119.


https://www.biorxiv.org/content/10.1101/540880v1.abstract
https://www.biorxiv.org/content/10.1101/540880v1.abstract

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

27.

28.

29.

30.

31.

32.

33.

34.

35.

36

Ayroles, Julien F., Sean M. Buchanan, Chelsea O’Leary, Kyobi Skutt-Kakaria, Jennifer K. Grenier,
Andrew G. Clark, Daniel L. Hartl, and Benjamin L. de Bivort. 2015. “Behavioral Idiosyncrasy
Reveals Genetic Control of Phenotypic Variability.” Proceedings of the National Academy of
Sciences of the United States of America 112 (21): 6706—11.

Claridge-Chang, Adam, Robert D. Roorda, Eleftheria Vrontou, Lucas Sjulson, Haiyan Li, Jay Hirsh,
and Gero Miesenbock. 2009. “Writing Memories with Light-Addressable Reinforcement
Circuitry.” Cell 139 (2): 405-15.

Dierick, Herman A., and Ralph J. Greenspan. 2007. “Serotonin and Neuropeptide F Have Opposite
Modulatory Effects on Fly Aggression.” Nature Genetics 39 (5): 678-82.

Riemensperger, Thomas, Guillaume Isabel, Héléne Coulom, Kirsa Neuser, Laurent Seugnet,
Kazuhiko Kume, Magali Iché-Torres, et al. 2011. “Behavioral Consequences of Dopamine
Deficiency in the Drosophila Central Nervous System.” Proceedings of the National Academy of
Sciences of the United States of America 108 (2): 834-39.

Kim, Young-Cho, Hyun-Gwan Lee, and Kyung-An Han. 2007. “D1 Dopamine Receptor dDA1 Is
Required in the Mushroom Body Neurons for Aversive and Appetitive Learning in Drosophila.”
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27 (29):
7640-47.

Lebestky, Tim, Jung-Sook C. Chang, Heiko Dankert, Lihi Zelnik, Young-Cho Kim, Kyung-An Han,
Fred W. Wolf, Pietro Perona, and David J. Anderson. 2009. “Two Different Forms of Arousal in
Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct
Neural Circuits.” Neuron 64 (4): 522—-36.

Szyszka, Paul, Christiane Demmler, Mariann Oemisch, Ludwig Sommer, Stephanie Biergans,
Benjamin Birnbach, Ana F. Silbering, and C. Giovanni Galizia. 2011. “Mind the Gap: Olfactory
Trace Conditioning in Honeybees.” The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience 31 (20): 7229-39.

Ko, Kang I., Cory M. Root, Scott A. Lindsay, Orel A. Zaninovich, Andrew K. Shepherd, Steven A.
Wasserman, Susy M. Kim, and Jing W. Wang. 2015. “Starvation Promotes Concerted
Modulation of Appetitive Olfactory Behavior via Parallel Neuromodulatory Circuits.” eLife 4
(July). https://doi.org/10.7554/eLife.08298.

Hamada, Fumika N., Mark Rosenzweig, Kyeongjin Kang, Stefan R. Pulver, Alfredo Ghezzi, Timothy
J. Jegla, and Paul A. Garrity. 2008. “An Internal Thermal Sensor Controlling Temperature
Preference in Drosophila.” Nature 454 (7201): 217-20.

. Sykes, Paul A., and Barry G. Condron. 2005. “Development and Sensitivity to Serotonin of

Drosophila Serotonergic Varicosities in the Central Nervous System.” Developmental Biology

286 (1): 207-16.



882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

37

38

39

40

41

42

43

44

45.

46

47

48

. Kitamoto, T. 2001. “Conditional Modification of Behavior in Drosophila by Targeted Expression of a
Temperature-sensitive Shibire Allele in Defined Neurons.” Journal of Neurobiology.
https://onlinelibrary.wiley.com/doi/abs/10.1002/neu.1018.

. Asahina, Kenta, Kiichi Watanabe, Brian J. Duistermars, Eric Hoopfer, Carlos Roberto Gonzalez,
Eyran Arna Eyjélfsdéttir, Pietro Perona, and David J. Anderson. 2014. “Tachykinin-Expressing
Neurons Control Male-Specific Aggressive Arousal in Drosophila.” Cell 156 (1-2): 221-35.

. Parnas, Moshe, Andrew C. Lin, Wolf Huetteroth, and Gero Miesenbdck. 2013. “Odor Discrimination
in Drosophila: From Neural Population Codes to Behavior.” Neuron 79 (5): 932—44.

. Das, Sudeshna, Madhumala K. Sadanandappa, Adrian Dervan, Aoife Larkin, John Anthony Lee,
Indulekha P. Sudhakaran, Rashi Priya, et al. 2011. “Plasticity of Local GABAergic Interneurons
Drives Olfactory Habituation.” Proceedings of the National Academy of Sciences of the United
States of America 108 (36): E646-54.

. Bhandawat, Vikas, Shawn R. Olsen, Nathan W. Gouwens, Michelle L. Schlief, and Rachel I. Wilson.
2007. “Sensory Processing in the Drosophila Antennal Lobe Increases Reliability and
Separability of Ensemble Odor Representations.” Nature Neuroscience 10 (11): 1474-82.

. Schulz, David J., Jean-Marc Goaillard, and Eve Marder. 2006. “Variable Channel Expression in
Identified Single and Electrically Coupled Neurons in Different Animals.” Nature Neuroscience 9
(3): 356-62.

. Stern, Shay, Christoph Kirst, and Cornelia I. Bargmann. 2017. “Neuromodulatory Control of
Long-Term Behavioral Patterns and Individuality across Development.” Cell 171 (7):
1649-62.e10.

. Mansourian, Suzan, Anders Enjin, Erling V. Jirle, Vedika Ramesh, Guillermo Rehermann, Paul G.
Becher, John E. Pool, and Marcus C. Stensmyr. 2018. “Wild African Drosophila Melanogaster
Are Seasonal Specialists on Marula Fruit.” Current Biology: CB 28 (24): 3960—-68.e3.

Becher, Paul G., Gerhard Flick, Elzbieta Rozpedowska, Alexandra Schmidt, Arne Hagman,
Sébastien Lebreton, Mattias C. Larsson, et al. 2012. “Yeast, Not Fruit Volatiles Mediate
Drosophila Melanogaster Attraction, Oviposition and Development.” Edited by Ken Thompson.
Functional Ecology 26 (4): 822—-28.

. Austin, Christopher J., Christopher G. Guglielmo, and Amanda J. Moehring. 2014. “A Direct Test of
the Effects of Changing Atmospheric Pressure on the Mating Behavior of Drosophila
Melanogaster.” Evolutionary Ecology 28 (3): 535—44.

. Zhang, Xiaonan, and Quentin Gaudry. 2016. “Functional Integration of a Serotonergic Neuron in the
Drosophila Antennal Lobe.” eLife 5 (August). https://doi.org/10.7554/eL ife.16836

. Olsen, Shawn R., Vikas Bhandawat, and Rachel |. Wilson. 2010. “Divisive Normalization in
Olfactory Population Codes.” Neuron 66 (2): 287-99.



https://onlinelibrary.wiley.com/doi/abs/10.1002/neu.1018
https://onlinelibrary.wiley.com/doi/abs/10.1002/neu.1018
https://doi.org/10.7554/eLife.16836
https://doi.org/10.7554/eLife.16836

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Qin, Hongtao, Michael Cressy, Wanhe Li, Jonathan S. Coravos, Stephanie A. Izzi, and Joshua
Dubnau. 2012. “Gamma Neurons Mediate Dopaminergic Input during Aversive Olfactory
Memory Formation in Drosophila.” Current Biology: CB 22 (7): 608—14.

Kong, Eric C., Katherine Woo, Haiyan Li, Tim Lebestky, Nasima Mayer, Melissa R. Sniffen, Ulrike
Heberlein, Roland J. Bainton, Jay Hirsh, and Fred W. Wolf. 2010. “A Pair of Dopamine Neurons
Target the D1-like Dopamine Receptor DopR in the Central Complex to Promote
Ethanol-Stimulated Locomotion in Drosophila.” PloS One 5 (4): €9954.

Kottler, Benjamin, Richard Faville, Jessika Cristina Bridi, and Frank Hirth. 2019. “Inverse Control of
Turning Behavior by Dopamine D1 Receptor Signaling in Columnar and Ring Neurons of the
Central Complex in Drosophila.” Current Biology: CB 29 (4): 567—77 .€6.

Corfas, R. A., and M. H. Dickinson. 2018. “Diverse Food-Sensing Neurons Trigger Idiothetic Local
Search in Drosophila.” bioRxiv. https://www.biorxiv.org/content/10.1101/433771v1.abstract.

Stone, Thomas, Barbara Webb, Andrea Adden, Nicolai Ben Weddig, Anna Honkanen, Rachel
Templin, William Wocislo, Luca Scimeca, Eric Warrant, and Stanley Heinze. 2017. “An
Anatomically Constrained Model for Path Integration in the Bee Brain.” Current Biology: CB 27
(20): 3069-85.e11.

Kakaria, Kyobi S., and Benjamin L. de Bivort. 2017. “Ring Attractor Dynamics Emerge from a
Spiking Model of the Entire Protocerebral Bridge.” Frontiers in Behavioral Neuroscience 11
(February): 8.

Ormerod, Kiel G., Olivia K. LePine, Prabhodh S. Abbineni, Justin M. Bridgeman, Jens R. Coorssen,
A. Joffre Mercier, and Glenn J. Tattersall. 2017. “Drosophila Development, Physiology, Behavior,
and Lifespan Are Influenced by Altered Dietary Composition.” Fly 11 (3): 153—70.

Parnas, D., A. P. Haghighi, R. D. Fetter, S. W. Kim, and C. S. Goodman. 2001. “Regulation of
Postsynaptic Structure and Protein Localization by the Rho-Type Guanine Nucleotide Exchange
Factor dPix.” Neuron 32 (3): 415-24.

Lee, Tzumin, and Liqun Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of
Gene Function in Neuronal Morphogenesis.” Neuron.
https://doi.org/10.1016/s0896-6273(00)80701-1.

Yin, J. C., J. S. Wallach, M. Del Vecchio, E. L. Wilder, H. Zhou, W. G. Quinn, and T. Tully. 1994.
“Induction of a Dominant Negative CREB Transgene Specifically Blocks Long-Term Memory in
Drosophila.” Cell 79 (1): 49-58.

Brent, M. M., and I. |. Oster. 1974. “Nutritional Substitution: A New Approach to Microbial Control for
Drosophila Cultures.” Drosophila Information Service 155: 157.

Budick, Seth A., and Michael H. Dickinson. 2006. “Free-Flight Responses of Drosophila
Melanogaster to Attractive Odors.” The Journal of Experimental Biology 209 (Pt 15): 3001-17.



https://www.biorxiv.org/content/10.1101/433771v1.abstract
https://www.biorxiv.org/content/10.1101/433771v1.abstract
https://doi.org/10.1016/s0896-6273(00)80701-1
https://doi.org/10.1016/s0896-6273(00)80701-1

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

61. Honegger, Kyle S., Robert A. A. Campbell, and Glenn C. Turner. 2011. “Cellular-Resolution
Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body.” The
Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31 (33):
11772-85.

62. Hige, Toshihide, Yoshinori Aso, Mehrab N. Modi, Gerald M. Rubin, and Glenn C. Turner. 2015.
“Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila.” Neuron 88 (5):
985-98.

63. Pologruto, Thomas A., Bernardo L. Sabatini, and Karel Svoboda. 2003. “Scanimage: Flexible
Software for Operating Laser Scanning Microscopes.” Biomedical Engineering Online 2 (May):
13.

64. Grabe, Veit, Amelie Baschwitz, Hany K. M. Dweck, Sofia Lavista-Llanos, Bill S. Hansson, and Silke
Sachse. 2016. “Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila
Antennal Lobe.” Cell Reports 16 (12): 3401-13.

65. R Core Team. 2019. “R: A Language and Environment for Statistical Computing.” R Foundation for
Statistical Computing.

66. Nieuwenhuis, Sander, Birte U. Forstmann, and Eric-Jan Wagenmakers. 2011. “Erroneous Analyses
of Interactions in Neuroscience: A Problem of Significance.” Nature Neuroscience 14 (9):
1105-7.

67.Stan Development Team. 2018. Stan User’s Guide Version 2.18.
https://mc-stan.org/docs/2_18/stan-users-guide/index.html

68. Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. 2017. “Stan: A
Probabilistic  Programming Language.” Journal of Statistical Software 76 (1).
https://www.osti.gov/biblio/1430202.

69. Stan Development Team. 2018. RStan: the R interface to Stan. R package version 2.18.2.

http://mc-stan.org/.

70. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo

71. Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019.
“Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society: Series A (Statistics
in Society) 182 (2): 389-402.


https://www.osti.gov/biblio/1430202
https://www.osti.gov/biblio/1430202
http://mc-stan.org/
http://mc-stan.org/

982 Supplementary Materials



A computational fluid dynamics

0.25

0.2

variance
o
=

°

0.05

L
1000

I T
2000 3000 4000
distance traveled (mm)

5000

6000

variance

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
250

pre-odor sham
odor preference

odor-choice period
odor preference

distance traveled (mm)

L
1250

L L n
2250 3250 4250
distance traveled (mm)

5250

6250



983
984
985
986
987
088
989
990
991
992
993
994
995
996
997
998
999
1000
1001

Figure S1 — Dynamics of odor stimuli and behavioral variability

A)

C)

D)

Computational Fluid Dynamics (CFD) simulation of steady state airflow through a single linear
behavioral arena. Note the largely laminar flow along the length of the tunnel and the sharp flow
boundary created in the center choice zone. Warmer colors indicate higher flow rates.

CFD scalar mixing simulation showing the distribution of odor concentration at steady state. The
scenario simulated the flow of an odorized stream (magenta) in one end of the arena (outlined
in black) and clean air (green) in the other. A steep gradient is observed in the center choice
zone, with little diffusion into the opposite arm.

The running odor preference scores of 120 control (iso*""") flies as a function of distance
traveled in the arena. Each line depicts the preference score trajectory of an individual fly.
During the pre-odor period (top) most scores rapidly converge toward 0.5, but preference
trajectories during the odor-choice period (bottom) are considerably more divergent.

Across-fly variance of the trajectories depicted in S1C as a function of distance traveled. During
the pre-odor period (black) variance rapidly converges toward 0 as most flies approach a
preference of 0.5, but during the odor-choice period (blue) across-fly variance stays much
higher as flies exhibit preference for an odor.

Pre-odor period variance as a function of distance (black) fitted by the function var = 2.365 *
distance®®' - 0.0077 (red, R? = 0.96 for the region shown). This power-law relationship was

used to calculate the activity-based variance offset for each fly.
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1002  Figure S2 — Odor Ca™ response matrix for flies expressing GCaMP6m in GH146-Gal4 PNs. Integrated
1003  AF/F during and after the odor-stimulus period, by odor across the two 12 odor panels and OCT/MCH

1004  panel (columns). Rows are organized by individual fly and glomeruli.
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Figure S3 — Structure of odor response covariance.

A) Correlation matrix of Ca*™ responses across individual flies. Rows and columns are organized by
glomerulus and then odor. Here all responses for each odor are averaged within each fly. l.e., OCT and
MCH values reflect the average of up to nine values (two values from the 12 odor panels, and the
remainder from the OCT/MCH ftrials). The values for all other odorants are the average of the two
responses per fly in the 12 odor panels.

B) As in A), except rows and columns are organized by odor and then glomerulus.

C) Ranked eigenvalues of the principle components of a Ca*™ response space in which individual 12
odor panel trials are points and glomerulus-odor pairs are dimensions (corresponding to Figure 2I).

D) As in C) except for a a Ca*™ response space in which individual OCT or MCH trials are points and

glomeruli are dimensions (corresponding to Figure 2J,K).
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Figure S4 — Analysis of the robustness of the PCA results.

A)

C)

D)

PCA embedding of 12 odor panel trials for a data set with no missing values, i.e., the largest
complete data set that can be made from the values in Figure S7 (containing 6 control flies and
4 a-MW-fed flies, with responses to two 12 odor panels across four glomeruli each). Projection
onto PC1 and PC2 of the two 12 odor panel responses. Lines connect paired panels for each
individual.

Distance within and between flies in PC1-PC2 space for the data set used in A). Error bars are
+/-1 standard error as determined by bootstrapping of individual flies. P-values within conditions
reflect one-tailed resampling tests that the distance between flies is greater than the distance
within. P-values between conditions reflect one-tailed resampling tests that a-MW distances are
greater than control.

From the whole data set used in Figure 3E-G, distance between control-fed and a-MW-fed trials
as a function of the dimensionality of the projected PC space in which distances are calculated.
Shaded areas represent +/- standard error as calculated by bootstrap resampling.

As in C), but for distances (on a log y-axis) on just one PC at a time. a-MW-fed trials are
significantly farther apart on PC4 than control trials (asterisk). p = 0.028 by bootstrapping based

t-test comparing control and a-MW-fed inter-fly distances, and p = 0.026 for intra-fly distances.
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1033  Figure S5 — Sample individual kymographs of odor behavior for Dop71R1 flies. Reversals (turning
1034  around at the odor boundary) during the odor-choice period, indicate that the flies are detecting the
1035 odorants. Magenta = OCT, green = MCH.
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1036  Figure S6 — Parameters of the Bayesian model of odor preference

1037 A) Forest plot of the posterior distributions for all parameters of the neuromodulation and
1038 food-shock model (Figures 3C and 5B). Labels at right indicate which type of coefficient each
1039 parameter is in the term for variability (6?). Numbers by parameter labels at right indicate the
1040 “‘marginal sample size,” i.e., the number of flies available to fit each parameter. c/d indicates
1041 cornmeal/dextrose media; flake indicates F4-24 food.

1042 B) MAD (median absolute deviation) of wild type odor preferences measured daily (points) vs date.
1043 Blue line is a LOESS regression (span = 0.7), and grey region is the 95% CI. n = 3722.

1044 C) As in B) for the daily median of odor preference.

1045 D) MAD of wild type odor preferences measured daily (points) vs average daily temperature, as
1046 measured at the WBAN:14739 NOAA (Boston Logan International Airport) weather station. Blue
1047 line is a linear regression, and grey region is the 95% CI. n = 3722.

1048 E) As in D) for the daily median of odor preference.
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Figure S7 — Odor Ca*™ response matrices for control (left) and a-MW-fed (right) flies expressing
GCaMP6m in GH146-Gal4 PNs. Integrated AF/F during and after the odor-stimulus period, by odor
across the two 12 odor panels and OCT/MCH panel (columns). Rows are organized by individual fly

and glomeruli.
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Figure S8 — Model parameters for thermogenetic experiments
A) Forest plot of the posterior distributions for all parameters of the neural circuit dTRPA1 activation
model (Figure 4D). Labels at right indicate which type of coefficient each parameter is in the
term for variability (o?). Numbers by parameter labels at right indicate the “marginal sample
size,” i.e., the number of flies available to fit each parameter.

B) Asin A), for Shibire" experiments.



